## **EDULABS DIDACTIC**

# POWER ELECTRONICS TRAINER

## **EXPERIMENT 26**

## **EXPERIMENTS MANUAL**

| Experiment 26 | H-bridge converter | 1/12 |
|---------------|--------------------|------|
|---------------|--------------------|------|

#### **Objectives:** The trainee is able to

- 1. Acquaintance the principle of H-Bridge converter
- 2. Measure the quantities and direction of output voltage and current

#### **Experiments Lists**

- 1. Experiment 26.1: The output voltage of H-Bridge converter
- 2. Experiment 26.2: The output current of H-Bridge converter

#### Theory

The H-Bridge converter is a double direction output current converter and adjustable output voltage. The circuit diagram of H-Bridge consists of two IGBT circuits (T1-T3 and T2-T4) as shown on fig. 26.1. To prevent the short circuit each IGBT is fired separately.

The H-Bridge converter is control by firing pulse of the duty cycle and the direction of current will be assigned by the ON time of each IGBT, if firing the T1 and T2 current will flow from left side to right of the picture, on the contrary the direction of current will flow from right to left if the T3 and T4 are operate. The quantities of output voltage can be varying by control the ON time of IGBT.



Figure 26.1 the H-Bridge converter circuit

#### **Equipment Requirement**

| No. | Item                                     | Model       | Quantity |
|-----|------------------------------------------|-------------|----------|
| 1   | Group of Diode Module                    | EM-21-01-03 | 1        |
| 2   | IGBT Chopper / Inverter Chopper          | EM-21-01-11 | 1        |
| 3   | PWM Controller                           | EM-21-02-03 | 1        |
| 4   | Resistive Load Module (I)                | EM-21-03-01 | 1        |
| 5   | Capacitive Load Module                   | EM-21-03-03 | 1        |
| 6   | Three Phase AC Power Supply              | EM-21-04-01 | 1        |
| 7   | DC Power Supply                          | EM-21-04-02 | 1        |
| 8   | 4mm Safety Stackable Connecting Lead Set | EM-21-12-01 | 1 Set    |
| 9   | DC Voltmeter                             | EM-30-13-01 | 1        |
| 10  | DC Ammeter                               | EM-30-13-02 | 1        |
| 11  | 4mm Stackable Connecting Lead Set        | EM-30-15-12 | 1 Set    |
| 12  | 19mm Shunt Plug Set                      | PTL-2170    | 2        |
| 13  | Digital Storage Oscilloscope             | TDS-2102C   | 1        |

EDULABS DIDACTIC

www.scienscope.com.my

#### Procedure

### **Experiment 26.1: The output voltage of H-Bridge converter**

1. Construct the circuit according to circuit diagram Figure 26.1.



2. PWM Controller setting:

## - Frequency Range = X10 (CHANGE FROM X100 TO X10 TO PREVENT HIGH CURRENT FLOW WHEN ADJUST THE HZ KNOB TO MAXIMUM, TRNAFORMER OUTPUT CURRENT MAY UP TO 1.5A AC AND BURN THE TRANSFORMER (0-45VAC)

- Frequency Adjust = 200Hz

- 3. Connect the voltage supply  $\pm 15$  V to PWM controller.
- 4. Connect S1 of Q1 to S1 of PWM controller.
- 5. Connect S4 of Q4 to S4 of PWM controller.
- 6. Connect S2 of Q2 to S2 of PWM controller.
- 7. Connect S3 of Q3 to S3 of PWM controller.
- 8. Adjust the duty cycle of PWM generators at  $t_{on} = 0\%$  in **forward mode**.
- 9. Turn ON power supply for PWM Controller before rectifier circuit.
- 10. Measure and record the quantities and direction of output voltage in Experimental Table 26.1.1;
- 11. Change the duty cycle as  $t_{on} = 0\%$  in **reverse mode** to measure and record the corresponding voltage in Experimental Table 26.1.2, relatively;
- 12. Turn OFF power supply.



Figure 26.1 Circuit diagram for measure the output voltage

| Experiment 26 | H-bridge converter | 4/12 |
|---------------|--------------------|------|
|---------------|--------------------|------|

## **Experimental Table 26.1.1**

| Duty Cycle (%)* | <b>Vo</b> (V) | <b>Direction</b> (+/-) | Waveform at Load |
|-----------------|---------------|------------------------|------------------|
| 0               |               |                        |                  |
| 20(F)           |               |                        |                  |
| 40(F)           |               |                        |                  |
| 60(F)           |               |                        |                  |
| 80(F)           |               |                        |                  |
| 100(F)          |               |                        |                  |

| Experiment 26 | H-bridge converter | 5/12 |
|---------------|--------------------|------|
|---------------|--------------------|------|

## **Experimental Table 26.1.2**

| Duty Cycle (%)* | <b>Vo</b> (V) | <b>Direction</b> (+/-) | Waveform at Load |
|-----------------|---------------|------------------------|------------------|
| 0               |               |                        |                  |
| 20(R)           |               |                        |                  |
| 40(R)           |               |                        |                  |
| 60(R)           |               |                        |                  |
| 80(R)           |               |                        |                  |
| 100(R)          |               |                        |                  |

Note\*: Adjust in approximate scale.

| Experiment 26 | H-bridge converter | 6/12 |
|---------------|--------------------|------|
| Experiment 26 | H-bridge converter | 6/   |

## Expected Result Table 26.1.1

| Duty Cycle (%)* | <b>Vo</b> (V) | <b>Direction</b> (+/-) | Waveform at Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|---------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0               | 0             |                        | ■ 27-Mar'19 6:28 Trigd T MEASURE<br>Frequency<br>1:2.208kHz<br>2:chan off<br>Vpp<br>1: 1310<br>2:chan off<br>Vms<br>1:48.10<br>2:chan off<br>Vmin<br>1:-64.00<br>2:chan off<br>Period<br>1:452.8us<br>2:chan off<br>Main<br>1:452.8us<br>2:chan off<br>CH1 EDGE ✓ 2.17437kHz<br>CH1 = 200<br>CH2 ==50<br>CH3 ==50<br>CH3 ==50<br>CH3 ==50<br>CH4 ==50<br>CH |
| 20(F)           | 7             | -                      | •@•         27-Mar'19         6:31         Trigd _m         MEASURE           Frequency         1:2.477kHz         2:chan off         Ypp           1:         1280         2:chan off         Yms           1:         1:280         2:chan off         Yms           1:         1:51.50         2:chan off         Ymin           1:-64.00         2:chan off         Ymin           1:-794ms         2:chan off         Ymin           1:1.794ms         2:chan off         Ymin           1:1.794ms         2:02624kHz         Ymin           CH1         2:0         CH2         SU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 40(F)           | 13            | -                      | •œ•         27-Mar'19         6:31         Trigd J™L         MEASURE           Frequency         1:2.004kHz         2:chan off         2:chan off           1:         1200         2:chan off         Vms           1:         1:57.00         2:chan off           2:chan off         Vms         1:57.00           2:chan off         Vmin         1:-64.80           2:chan off         Period         1:498.9us           1:mage saved to DS0006.BMP completed         2:02849kHz           CH1         2:5ms         CH1 EDGE ✓         2.02849kHz           CH1         :=200         CH2         :=50         CH3         :=50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 60(F)           | 25            | -                      | ••         27-Mar'19         6:31         Trigd m         MEASURE           Frequency         1:149.4Hz         2:chan off         Vpp           1:123U         2:chan off         Vims           1:30.9U         2:chan off         Vims           1:30.9U         2:chan off         Vims           1:30.9U         2:chan off         Vims           1:30.9U         2:chan off         Vimin           1:-66.4U         2:chan off         Vimin           1:-60.90         2:00432kHz         2:00432kHz           CH1 =:20U         CH2 ::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



Note\*: Adjust in approximate scale.

### **Expected Result Table 26.1.2**

| Duty Cycle (%)* | <b>Vo</b> (V) | <b>Direction</b> (+/-) | Waveform at Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------|---------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0               | 0             |                        | •@3•       27-Mar'19       6:28       Trigd fml       MEASURE         Frequency       1:2,208kHz       2:chan off         2:chan off       2:chan off         1•       1:31U       2:chan off         1•       1:48.1U       2:chan off         2:chan off       Yms         1:48.1U       2:chan off         2:chan off       Ymin         1:-64.0U       2:chan off         0:000 s       2:chan off         0:452.8us       2:chan off                                           |
| 20(R)           | 8             | +                      | • ◯ 27-Mar² 19         6:28         Trigit _m         MEASURE           Frequency         1:2.348kHz         2:chan off           Vpp         1:134U         2:chan off           Vpp         1:134U         2:chan off           Vistor         1:52.4U         2:chan off           2:chan off         Vistor         1:52.4U           2:chan off         Vistor         1:52.4U           2:chan off         Vistor         1:68.8U           2:chan off         Vistor         1:425.9U           0.000 s         2:chan off         2:chan off           0.000 s         2:chan off         2:chan off |

www.scienscope.com.my

| Experiment 26 | H-bridge converter |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8/12                                                                                                                                                                                                                                                                             |
|---------------|--------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40(R)         | 16                 | + | • @ 27-Mar'19 6:27 Trigd m ME<br>Free<br>1:2.<br>2:cr<br>1: 1<br>2:cr<br>1: 50<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:56<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr<br>1:57<br>2:cr | ASURE           quency           .414kHz           han off           Vpp           1290           han off           Vrms           6.90           han off           Vrms           64.80           han off           Period           14.1us           han off           8329kHz |
| 60(R)         | 27                 | + | • 27-Mar'19 6:27 Trigd m HE<br>Free<br>1:14<br>1:14<br>1:14<br>1:14<br>1:14<br>1:32<br>2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:2:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:<br>1:5:cr<br>1:5:cr<br>1:<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:5:cr<br>1:                                                                                                                  | ASURE<br>quency<br>49.3Hz<br>han off<br>Vpp<br>1290<br>han off<br>Vrms<br>0.40<br>han off<br>Vrms<br>66.40<br>han off<br>Period<br>.698ms<br>han off<br>19542kHz<br>50                                                                                                           |
| 80(R)         | 37                 | + | • @ • 27-Mar'19 6:27 Trigd ML<br>Frea<br>1:<br>2:cr<br>1.<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>1:<br>2:cr<br>2:<br>2:cr<br>2:<br>2:cr<br>2:<br>2:cr<br>2:<br>2:cr<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ASURE<br>quency<br>?<br>han off<br>Vpp<br>?<br>han off<br>Vmin<br>52.80<br>han off<br>Period<br>?<br>han off<br>21101kHz<br>= 50                                                                                                                                                 |
| 100(R)        | 40                 | + |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ABOUNE<br>quency<br>49.2Hz<br>han off<br>Vpp<br>8.80<br>han off<br>Vrms<br>0.80<br>han off<br>Vrmin<br>1.600<br>han off<br>Period<br>.702ms<br>han off<br>5.951Hz<br>50                                                                                                          |

| Experiment 26 | H-bridge converter | 9/12 |
|---------------|--------------------|------|
|---------------|--------------------|------|

#### **Experiment 26.2: The output current of H-Bridge converter**



- 1. Construct the circuit according to circuit diagram Figure 26.2.
- 2. PWM Controller setting:
  - Frequency Range = X10
  - Frequency Adjust = 200Hz
- 3. Connect the voltage supply  $\pm 15$  V to PWM controller.
- 4. Connect S1 of Q1 to S1 of PWM controller.
- 5. Connect S4 of Q4 to S4 of PWM controller.
- 6. Connect S2 of Q2 to S2 of PWM controller.
- 7. Connect S3 of Q3 to S3 of PWM controller.
- 8. Adjust the duty cycle of PWM generators at  $t_{on} = 0\%$  in **forward mode**.
- 9. Turn ON power supply of rectifier circuit and PWM Controller.
- 10. Measure and record the quantities and direction of output current in Experiment Table 26.2.1;
- 11. Change the duty cycle as  $t_{on} = 0\%$  in **reverse mode** to measure and record the current in Experimental Table 26.2.2, relatively.
- 12. Vary the duty cycle in range of 0 % to 100 % on each mode (Forward/Reverse) to observe the effect of current flow.
- 13. Turn OFF power supply.



Figure 26.2 Circuit diagram for measure the output current

## **Experimental Table 26.2.1**

| Duty Cycle (%)* | Io (A) | <b>Direction</b> (+/-) |
|-----------------|--------|------------------------|
| 0               |        |                        |
| 20(F)           |        |                        |
| 40(F)           |        |                        |
| 60(F)           |        |                        |
| 80(F)           |        |                        |
| 100(F)          |        |                        |

**Note\*: Adjust in approximate scale.** EDULABS DIDACTIC

| Experiment 26 | H-bridge converter  |   |
|---------------|---------------------|---|
| Experiment 20 | 11-blidge converter | 1 |

## **Expected Result Table 26.2.1**

| Duty Cycle (%)* | Io (A) | <b>Direction</b> (+/-) |
|-----------------|--------|------------------------|
| 0               | 0      |                        |
| 20(F)           | 0.04   | -                      |
| 40(F)           | 0.07   | -                      |
| 60(F)           | 0.13   | -                      |
| 80(F)           | 0.19   | -                      |
| 100(F)          | 0.20   | -                      |

Note\*: Adjust in approximate scale.

## **Experimental Table 26.2.2**

| Duty Cycle (%)* | Io (A) | <b>Direction</b> (+/-) |
|-----------------|--------|------------------------|
| 0               |        |                        |
| 20(R)           |        |                        |
| 40(R)           |        |                        |
| 60(R)           |        |                        |
| 80(R)           |        |                        |
| 100(R)          |        |                        |

Note\*: Adjust in approximate scale.

## Expected Result Table 26.2.2

| Duty Cycle (%)* | Io (A) | <b>Direction</b> (+/-) |
|-----------------|--------|------------------------|
| 0               | 0      |                        |
| 20(R)           | 0.04   | +                      |
| 40(R)           | 0.09   | +                      |
| 60(R)           | 0.16   | +                      |
| 80(R)           | 0.20   | +                      |
| 100(R)          | 0.21   | +                      |

Note\*: Adjust in approximate scale.

### WARRANTY AND STANDARD CONDITIONS OF SALE

The Seller warrants to the Purchaser that any equipment manufactured by it and bearing its name plate to be free from defects in material or workmanship, under proper and normal use and service, as follows: If, at any time within one (1) year from the date of shipment, the Purchaser notifies the Seller that in his opinion, the equipment is defective, and returns the equipment to the Seller's originating factory prepaid, and the Sellers inspection finds the equipment to be defective in material or workmanship **except part like switches, knob**, **push button, lighting, etc.** the Seller will promptly correct it by either, at its option, repairing any defective part or material or replacing it free of charge and return shipping lowest cost transportation prepaid by purchaser (if Purchaser requests premium transportation, Purchaser will be billed for difference in transportation costs). If inspection by the Seller does not disclose any defect in material or workmanship, the Seller's regular charges will apply. This warranty shall be effective only if use and maintenance is in accordance with Seller's instructions and written notice of a defect is given to the Seller within such period. **THIS WARRANTY IS EXCLUSIVE AND IS IN LIEU OF ANY OTHER WARRANTIES, WRITTEN, ORAL OR IMPLIED. SPECIFICALLY, WITHOUT LIMITATION, THERE IS NO WARRANTY OF <b>MERCHANTABILITY OR FITNESS FOR ANY PURPOSE**. The liability of the Seller shall be limited to the repair or replacement of materials or parts as above set forth.

### LIMITATION OF LIABILITY

The Seller shall not be liable for any claim or consequential or special loss or damage arising or alleged to have arisen from any delay in delivery or malfunction or failure of the equipment. The Seller's liability for any other loss or damage arising out of or connected with the manufacture or use of the equipment sold, including damage due to negligence, shall not in any event exceed the price of the equipment supplied by Seller.

#### **GENERAL CONDITION**

All orders are subject to acceptance by Seller at its Main Office. Stenographic and clerical errors are subject to correction. No oral or subsequent modification or any other foregoing general provisions or of any term or condition of any order shall be binding unless agreed to in writing by the Seller and Purchaser.

**SCIENSCOPE SDN BHD** reserves the right to make changes at any time, without notice, in prices, colors, materials, specifications and models, and also to discontinue models.

## **SCIENSCOPE SDN BHD**

(Company No: 520887-D)
20, Jalan BP 5/10, Bandar Bukit Puchong,
47120 Puchong, Selangor, Malaysia.
Tel: 6012-4080443
E-mail: sales@scienscope.com.my
Website: http://www.scienscope.com.my



Solution provider for scientific and technical education training system since 2000